Simple 3-variable mediation analysis simulation to test the hypothesis that X -> Y is mediated by the relationship X -> M -> Y. Currently, M and Y are assumed to be continuous variables with Gaussian errors, while X may be continuous or dichotomous.
Usage
p_mediation(
n,
a,
b,
cprime,
dichotomous.X = FALSE,
two.tailed = TRUE,
method = "wald",
sd.X = 1,
sd.Y = 1,
sd.M = 1,
gen_fun = gen_mediation,
return_analysis = FALSE,
...
)
gen_mediation(
n,
a,
b,
cprime,
dichotomous.X = FALSE,
sd.X = 1,
sd.Y = 1,
sd.M = 1,
...
)Arguments
- n
total sample size unless
dichotomous.X = TRUE, in which the value represents the size per group- a
regression coefficient for the path X -> M
- b
regression coefficient for the path M -> Y
- cprime
partial regression coefficient for the path X -> Y
- dichotomous.X
logical; should the X variable be generated as though it were dichotomous? If TRUE then
nrepresents the sample size per group- two.tailed
logical; should a two-tailed or one-tailed test be used?
- method
type of inferential method to use. Default uses the Wald (a.k.a., Sobel) test
- sd.X
standard deviation for X
- sd.Y
standard deviation for Y
- sd.M
standard deviation for M
- gen_fun
function used to generate the required two-sample data. Object returned must be a
data.framewith the columns"DV"and"group". Default usesgen_mediationto generate conditionally Gaussian distributed samples. User defined version of this function must include the argument...- return_analysis
logical; return the analysis object for further extraction and customization?
- ...
additional arguments to be passed to
gen_fun. Not used unless a customizedgen_funis defined
Author
Phil Chalmers rphilip.chalmers@gmail.com
Examples
# joint test H0: a*b = 0
p_mediation(50, a=sqrt(.35), b=sqrt(.35), cprime=.39)
#> [1] 9.263932e-05
p_mediation(50, a=sqrt(.35), b=sqrt(.35), cprime=.39, dichotomous.X=TRUE)
#> [1] 6.110203e-09
# return analysis model
p_mediation(50, a=sqrt(.35), b=sqrt(.35), cprime=.39, return_analysis=TRUE)
#> lavaan 0.6-21 ended normally after 1 iteration
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 5
#>
#> Number of observations 50
#>
#> Model Test User Model:
#>
#> Test statistic 0.000
#> Degrees of freedom 0
# \donttest{
# power to detect mediation
p_mediation(n=50, a=sqrt(.35), b=sqrt(.35), cprime=.39) |>
Spower(parallel=TRUE, replications=1000)
#>
#> Execution time (H:M:S): 00:00:20
#> Design conditions:
#>
#> # A tibble: 1 × 4
#> n cprime sig.level power
#> <dbl> <dbl> <dbl> <lgl>
#> 1 50 0.39 0.05 NA
#>
#> Estimate of power: 0.996
#> 95% Confidence Interval: [0.992, 1.000]
# sample size estimate for .95 power
p_mediation(n=interval(50,200), a=sqrt(.35), b=sqrt(.35), cprime=.39) |>
Spower(power=.95, parallel=TRUE)
#>
#> Execution time (H:M:S): 00:23:37
#> Design conditions:
#>
#> # A tibble: 1 × 4
#> n cprime sig.level power
#> <dbl> <dbl> <dbl> <dbl>
#> 1 NA 0.39 0.05 0.95
#>
#> Estimate of n: 66.0
#> 95% Predicted Confidence Interval: [NA, NA]
# }